PUBLICATIONS

Publications of DiDAX project

[1]
A. M. Luescher, W. J. Stark, and R. N. Grass, “DNA-Based Chemical Unclonable Functions for Cryptographic Anticounterfeit Tagging of Pharmaceuticals,” ACS Nano, p. acsnano.4c10870, Oct. 2024, doi: published: 10.1021/acsnano.4c10870; open access: 10.3929/ethz-b-000703583. Available: https://pubs.acs.org/doi/10.1021/acsnano.4c10870
[1]
A. Banerjee, Y. Yehezkeally, A. Wachter-Zeh, and E. Yaakobi, “Correcting a Single Deletion in Reads from a Nanopore Sequencer,” in 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece: IEEE, Jul. 2024, pp. 103–108. doi: published: 10.1109/ISIT57864.2024.10619468; open access: 10.48550/arXiv.2401.15939. Available: https://arxiv.org/abs/2401.15939
[1]
D. Bar-Lev, T. Etzion, E. Yaakobi, and Z. Yakhini, “Representing Information on DNA Using Patterns Induced by Enzymatic Labeling,” in 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece: IEEE, Jul. 2024, pp. 1943–1948. doi: published: 10.1109/ISIT57864.2024.10619227; open access: 10.48550/arXiv.2405.08475. Available: https://arxiv.org/abs/2405.08475
[1]
O. Sabary, I. Preuss, R. Gabrys, Z. Yakhini, L. Anavy, and E. Yaakobi, “Error-Correcting Codes for Combinatorial Composite DNA,” in 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece: IEEE, Jul. 2024, pp. 109–114. doi: published: 10.1109/ISIT57864.2024.10619334; open access: 10.48550/arXiv.2401.15666. Available: https://arxiv.org/abs/2401.15666
[1]
S. Singhvi, R. Con, H. M. Kiah, and E. Yaakobi, “An Optimal Sequence Reconstruction Algorithm for Reed-Solomon Codes,” in 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece: IEEE, Jul. 2024, pp. 2832–2837. doi: published: 10.1109/ISIT57864.2024.10619163; open access: 10.48550/arXiv.2403.07754. Available: https://arxiv.org/abs/2403.07754
[1]
F. Walter, O. Sabary, A. Wachter-Zeh, and E. Yaakobi, “Coding for Composite DNA to Correct Substitutions, Strand Losses, and Deletions,” in 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece: IEEE, Jul. 2024, pp. 97–102. doi: published: 10.1109/ISIT57864.2024.10619202; open access: 10.48550/arXiv.2404.12868. Available: https://arxiv.org/abs/2404.12868
[1]
A. Banerjee, Y. Yehezkeally, A. Wachter-Zeh, and E. Yaakobi, “Error-Correcting Codes for Nanopore Sequencing,” IEEE Transactions on Information Theory, vol. 70, no. 7, pp. 4956–4967, Jul. 2024, doi: published: 10.1109/TIT.2024.3380615; open access: 10.48550/arXiv.2305.10214. Available: https://ieeexplore.ieee.org/document/10478160
[1]
I. Preuss, B. Galili, Z. Yakhini, and L. Anavy, “Sequencing Coverage Analysis for Combinatorial DNA-Based Storage Systems,” IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, vol. 10, no. 2, pp. 297–316, Jun. 2024, doi: published: 10.1109/TMBMC.2024.3408053; open access: 10.1101/2024.01.10.574966. Available: https://ieeexplore.ieee.org/document/10543138
[1]
I. Preuss, M. Rosenberg, Z. Yakhini, and L. Anavy, “Efficient DNA-based data storage using shortmer combinatorial encoding,” Sci Rep, vol. 14, no. 1, p. 7731, Apr. 2024, doi: published: 10.1038/s41598-024-58386-z; open access: 10.1101/2021.08.01.454622. Available: https://www.nature.com/articles/s41598-024-58386-z
[1]
J. Behr et al., “An open-source advanced maskless synthesizer for light-directed chemical synthesis of large nucleic acid libraries and microarrays.” ChemRxiv, Feb. 22, 2024. doi: 10.26434/chemrxiv-2024-j4c90. Available: https://chemrxiv.org/engage/chemrxiv/article-details/65ba15e39138d231611ab534
[1]
A. L. Gimpel, W. J. Stark, R. Heckel, and R. N. Grass, “Challenges for error-correction coding in DNA data storage: photolithographic synthesis and DNA decay,” Digital Discovery, 2024, doi: published: 10.1039/D4DD00220B; open access: 10.1101/2024.07.04.602085. Available: https://xlink.rsc.org/?DOI=D4DD00220B

Earlier related publications of team members

[1]
S. Gantenbein et al., “Three-dimensional printing of mycelium hydrogels into living complex materials,” Nat. Mater., vol. 22, no. 1, pp. 128–134, Jan. 2023, doi: 10.1038/s41563-022-01429-5. Available: https://www.nature.com/articles/s41563-022-01429-5
[1]
N. Kleger et al., “Light-Based Printing of Leachable Salt Molds for Facile Shaping of Complex Structures,” Advanced Materials, vol. 34, no. 32, p. 2203878, 2022, doi: 10.1002/adma.202203878. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202203878
[1]
X. Chen, S. K. Ammu, K. Masania, P. G. Steeneken, and F. Alijani, “Diamagnetic Composites for High-Q Levitating Resonators,” Advanced Science, vol. 9, no. 32, p. 2203619, 2022, doi: 10.1002/advs.202203619. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202203619
[1]
R. Shafir, O. Sabary, L. Anavy, E. Yaakobi, and Z. Yakhini, “Sequence Reconstruction Under Stutter Noise in Enzymatic DNA Synthesis,” in 2021 IEEE Information Theory Workshop (ITW), Oct. 2021, pp. 1–6. doi: 10.1109/ITW48936.2021.9611362. Available: https://ieeexplore.ieee.org/document/9611362
[1]
J. Lietard, A. Leger, Y. Erlich, N. Sadowski, W. Timp, and M. M. Somoza, “Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries,” Nucleic Acids Research, vol. 49, no. 12, p. 6687, Jul. 2021, doi: 10.1093/nar/gkab505. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266620/
[1]
I. Amit et al., “CRISPECTOR provides accurate estimation of genome editing translocation and off-target activity from comparative NGS data,” Nat Commun, vol. 12, no. 1, p. 3042, May 2021, doi: 10.1038/s41467-021-22417-4. Available: https://www.nature.com/articles/s41467-021-22417-4
[1]
O. Sabary, Y. Orlev, R. Shafir, L. Anavy, E. Yaakobi, and Z. Yakhini, “SOLQC: Synthetic Oligo Library Quality Control tool,” Bioinformatics, vol. 37, no. 5, pp. 720–722, Mar. 2021, doi: 10.1093/bioinformatics/btaa740. Available: https://doi.org/10.1093/bioinformatics/btaa740
[1]
M. Schreck et al., “3D Printed Scaffolds for Monolithic Aerogel Photocatalysts with Complex Geometries,” Small, vol. 17, no. 50, p. 2104089, 2021, doi: 10.1002/smll.202104089. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202104089
[1]
L. C. Meiser, J. Koch, P. L. Antkowiak, W. J. Stark, R. Heckel, and R. N. Grass, “DNA synthesis for true random number generation,” Nat Commun, vol. 11, no. 1, p. 5869, Nov. 2020, doi: 10.1038/s41467-020-19757-y. Available: https://www.nature.com/articles/s41467-020-19757-y
[1]
P. L. Antkowiak et al., “Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction,” Nat Commun, vol. 11, no. 1, p. 5345, Oct. 2020, doi: 10.1038/s41467-020-19148-3. Available: https://www.nature.com/articles/s41467-020-19148-3
[1]
A. Lenz, Y. Liu, C. Rashtchian, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding for Efficient DNA Synthesis,” in 2020 IEEE International Symposium on Information Theory (ISIT), Jun. 2020, pp. 2885–2890. doi: 10.1109/ISIT44484.2020.9174272. Available: https://ieeexplore.ieee.org/document/9174272
[1]
A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding Over Sets for DNA Storage,” IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 2331–2351, Apr. 2020, doi: 10.1109/TIT.2019.2961265. Available: https://ieeexplore.ieee.org/abstract/document/8937735
[1]
J. Koch, S. Gantenbein, K. Masania, W. J. Stark, Y. Erlich, and R. N. Grass, “A DNA-of-things storage architecture to create materials with embedded memory,” Nat Biotechnol, vol. 38, no. 1, pp. 39–43, Jan. 2020, doi: 10.1038/s41587-019-0356-z. Available: https://www.nature.com/articles/s41587-019-0356-z
[1]
L. Anavy, I. Vaknin, O. Atar, R. Amit, and Z. Yakhini, “Data storage in DNA with fewer synthesis cycles using composite DNA letters,” Nat Biotechnol, vol. 37, no. 10, pp. 1229–1236, Oct. 2019, doi: 10.1038/s41587-019-0240-x. Available: https://www.nature.com/articles/s41587-019-0240-x
[1]
K. Hölz, E. Schaudy, J. Lietard, and M. M. Somoza, “Multi-level patterning nucleic acid photolithography,” Nat Commun, vol. 10, no. 1, p. 3805, Aug. 2019, doi: 10.1038/s41467-019-11670-3. Available: https://www.nature.com/articles/s41467-019-11670-3
[1]
R. Heckel, G. Mikutis, and R. N. Grass, “A Characterization of the DNA Data Storage Channel,” Sci Rep, vol. 9, no. 1, p. 9663, Jul. 2019, doi: 10.1038/s41598-019-45832-6. Available: https://www.nature.com/articles/s41598-019-45832-6
[1]
R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Fundamental limits of DNA storage systems,” in 2017 IEEE International Symposium on Information Theory (ISIT), Jun. 2017, pp. 3130–3134. doi: 10.1109/ISIT.2017.8007106. Available: https://ieeexplore.ieee.org/abstract/document/8007106
[1]
M. Sack et al., “Express photolithographic DNA microarray synthesis with optimized chemistry and high-efficiency photolabile groups,” J Nanobiotechnol, vol. 14, no. 1, p. 14, Mar. 2016, doi: 10.1186/s12951-016-0166-0. Available: https://doi.org/10.1186/s12951-016-0166-0
[1]
R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust chemical preservation of digital information on DNA in silica with error-correcting codes,” Angew Chem Int Ed Engl, vol. 54, no. 8, pp. 2552–2555, Feb. 2015, doi: 10.1002/anie.201411378. Available: https://onlinelibrary.wiley.com/doi/10.1002/anie.201411378
[1]
N. Kretschy, A.-K. Holik, V. Somoza, K.-P. Stengele, and M. M. Somoza, “Next-Generation o-Nitrobenzyl Photolabile Groups for Light-Directed Chemistry and Microarray Synthesis,” Angewandte Chemie International Edition, vol. 54, no. 29, pp. 8555–8559, 2015, doi: 10.1002/anie.201502125. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201502125
[1]
D. Paunescu, M. Puddu, J. O. B. Soellner, P. R. Stoessel, and R. N. Grass, “Reversible DNA encapsulation in silica to produce ROS-resistant and heat-resistant synthetic DNA ‘fossils,’” Nat Protoc, vol. 8, no. 12, pp. 2440–2448, Dec. 2013, doi: 10.1038/nprot.2013.154. Available: https://www.nature.com/articles/nprot.2013.154